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1 Introduction

Fractals are sets that exhibit self-similarity. In this thesis, we will discuss
the construction of fractals with “iterated function systems” {Fi}ni=1 using
the contraction mapping theorem and explore some of their properties. It
is perhaps surprising at first that the closed interval [a, b] is a fractal in
this sense, so that the entire discussion of this article can be interpreted as
giving a different viewpoint on the classical (Euclidean) case. We also give a
parametrization of fractals via a space of “strings”.

In section 3, we discuss several measures on both a fractal itself and its
associated string space, specifically, a natural self-similar measure which is
related to the iterated function system {Fi}ni=1. This self-similar measure
is the one most commonly used when developing the theory of analysis on
fractals. The s-dimensional Hausdorff measure is also introduced, as it is a
very common measure for dealing with fractals in the literature. We also
discuss a certain measure on the associated string space that is related to the
Hausdorff measure.

In section 4, we investigate one of the most commonly used notions of
dimension for fractals, the Hausdorff dimension, which is related to the
Hausdorff measure. An important detail is that this dimension, which is
known to coincide with other notions of dimension in standard Euclidean
cases of Rn [2], actually allows for non-integer values. For example, as we
shall see, the Cantor set has Hausdorff dimension log 2/ log 3.

Finally, in section 5, we introduce the more recent development of Laplace
operators on a certain class of fractals. We will even be able to solve
Laplace’s equation with arbitrary boundary values, given a sensible notion
of “boundary” of a fractal.

2 Fractals and Self-Similarity

This section follows [2], [3], and [7].

2.1 Iterated Function Systems

Definition 2.1.1 (Similarity). A function between metric spaces f : S → T
is called a similarity with ratio r > 0 if
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ρT (f(x), f(y)) = rρS(x, y)

for all x, y ∈ S.

Definition 2.1.2 (Contraction). A function between metric spaces f : S →
T is called a contraction if there exists some 0 ≤ r < 1 such that

ρT (f(x), f(y)) ≤ rρS(x, y)

for all x, y ∈ S.

Lemma 2.1.3. Contractions and similarities are continuous.

Proof. Let f : S → T be a contraction with ratio 0 ≤ r < 1, and let ε > 0.
Set δ = ε/r. Then if ρS(x, y) < δ, we have

ρT (f(x), f(y)) ≤ rρS(x, y) < rδ = ε

Exactly the same argument works for similarities.

The following theorem, called the contraction mapping theorem, is an
important result and will play a central role in our definition of fractals.

Theorem 2.1.4 (contraction mapping theorem). Let (S, ρ) be a complete
metric space, and let f : S → S be a contraction. There exists a unique
x∗ ∈ S, called the fixed point of f , such that f(x∗) = x∗. Furthermore, for
each x0 ∈ S, the sequence defined by xn+1 = f(xn) converges to x∗.

Proof. By induction, we have ρ(xj+1, xj) ≤ rjρ(x1, x0). Let m < n and
let ε > 0. By applying the triangle inequality and the formula for a finite
geometric series, we have

ρ(xm, xn) ≤
n−1∑
j=m

ρ(xj+1, xj)

≤
n−1∑
j=m

rjρ(x1, x0)

= ρ(x1, x0)
rm − rn

1− r

= ρ(x1, x0)
rm(1− rn−m)

r − 1

≤ ρ(x1, x0)rm

1− r
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Since r ∈ [0, 1) we can take N large enough that (ρ(x1, x0)rN)/(1−r) < ε,
which gives us the desired result: if n,m > N then ρ(xm, xn) < ε. By
completeness of (S, ρ), the series xn converges to some element x∗ ∈ S. By
lemma 2.1.3, f is continuous, so we also have f(xn) → f(x∗). But, by
definition, xn+1 = f(xn), so the two limits must be equal, i.e.

xn → f(x∗) = x∗

So the limit x∗ is a fixed point of f . To show uniqueness, suppose there
were another such fixed point y∗ 6= x∗. Then, since x∗ and y∗ are fixed
points, we have ρ(x∗, y∗) = ρ(f(x∗), f(y∗)) . But since f is a contraction, we
also have ρ(f(x∗), f(y∗)) ≤ rρ(x∗, y∗). Now 0 ≤ r < 1, so this can only be
possible if ρ(f(x∗), f(y∗)) = ρ(x∗, y∗) = 0, hence x∗ = y∗.

We will use theorem 2.1.4 to define a fractal set. Specifically, given a
finite set of functions {Fi}ni=1 which all are simultaneously similarities and
contractions, we will later see that a fractal set K is the unique set satisfying
K = ∪iFi(K). This set of functions is of fundamental importance to the
study of fractals, and has a special name.

Definition 2.1.5 (Iterated function system). A finite set {Fi}ni=1 of contractions
which are also similarities is called an iterated function system.

Given r > 0, the open r-neighbourhood of a set A in a metric space is
defined to be:

Nr(A) := {y | ρ(x, y) < r for some x ∈ A}

Also, given a metric space S, we shall denote the collection of nonempty
compact subsets of S by H(S).

Definition 2.1.6 (Hausdorff metric). Given a metric space (S, ρ), the Hausdorff
metric is the function D : H(S)×H(S)→ R≥0 defined by

D(A,B) := inf{r > 0 | A ⊆ Nr(B) and B ⊆ Nr(A)}

The fact that D is a metric on H(S) is fairly easy to show. It is clear from
the definition that D is nonnegative and symmetric; the fact that D(A,B) =
0 if and only if A = B also follows from the definition. The fact that D is
finite follows from the fact that D acts on compact sets, and compact sets
are bounded.
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Only the triangle inequality needs a bit of attention. Let A,B,C ∈ H(S)
and let ε > 0. Then if a ∈ A, there exists b ∈ B such that ρ(a, b) <
D(A,B) + ε. Similarly, there exists c ∈ C such that ρ(b, c) < D(B,C) + ε.

Notice that this implies that A ⊆ Np(C) and similarly C ⊆ Np(A), where
p = ρ(a, b) + ρ(b, c) = D(A,B) +D(B,C) + 2ε. Therefore, by definition,

D(A,C) ≤ p = D(A,B) +D(B,C) + 2ε

But this holds for all ε > 0, hence D(A,C) ≤ D(A,B) +D(B,C) as was
claimed.

Lemma 2.1.7. Suppose that (S, ρ) is a complete metric space. Then (H(S), D)
is also a complete metric space.

Proof. Let (An) ⊆ H(S) be Cauchy. We define the candidate limit to be

A = {x | ∃xk → x such that ∀k, xk ∈ Ak}

There exists N such that if n,m > N , then D(An, Am) < ε/2. We claim
that if n ≥ N , then D(An, A) < ε. To see this, fix n ≥ N and consider the
following.

If x ∈ A, then there is some sequence (xk) converging to x, hence there
exists k0 such that ρ(x, xk0) < ε/2. Also, k ≥ N implies that there exists
some y ∈ An with ρ(xk, y) < ε/2, since D(Ak, An) < ε/2. So ρ(x, y) ≤
ρ(y, xk) + ρ(xk, x) < ε. Since x ∈ A was arbitrary, A ⊆ Nε(An).

Now if y ∈ An, choose k1 < k2 < . . . so that k1 = n, and D(Akj , Am) <
ε/2j for all m ≥ kj. Notice that by this definition, there could be large
gaps between any two successive elements kj and kj+1. Define the following
sequence: set yk ∈ Ak arbitrarily if k < n, let yn = y, and if ykj is defined
with kj ≤ k ≤ kj+1 then choose yk ∈ Ak such that ρ(ykj , yk) < ε/2j. Then
(yk) is Cauchy, hence convergent, say to x. Then x ∈ A and ρ(x, y) =
limk→∞ ρ(yk, y) < ε, so y ∈ Nε(A), hence An ⊆ Nε(A). Thus D(An, A) < ε,
so An → A in the Hausdorff metric.

We are finally ready to define a fractal.

Theorem 2.1.8. Let {Fi}ni=0 be an iterated function system on a metric
space (S, ρ). Then the fractal or attractor set of the iterated function system
is the unique compact set K satisfying
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K =
n⋃
i=1

Fi(K)

Furthermore, given any nonempty compact set V0 ⊆ S,the sequence

Vm+1 =
n⋃
i=1

Fi(Vm)

converges to K = limm→∞ Vm in the Hausdorff metric.

Proof. Notice that each Fi : H(S)→ H(S) is a contraction between complete
metric spaces, by lemma 2.1.7. Define

F (A) :=
n⋃
i=1

Fi(A).

Now, by lemma 2.1.3, each Fi is continuous. Since the continuous image
of a compact set is compact, Fi(A) is compact for any compact set A. Also
recall that the finite union of nonempty compact sets is a nonempty compact
set, so if A is compact then so is F (A) = ∪iFi(A). So F is still a map from
H(S) to H(S).

Next we show F is a contraction (in the Hausdorff metric). To see this,
set r = max{ri}, for ri the similarity ratio of Fi. Then r < 1 since each
ri < 1. Let A,B ∈ H(S); we wish to show that D(F (A), F (B)) ≤ rD(A,B).

Let q > D(A,B). If x ∈ F (A), then x = Fi(x
′) for some i, for some

x′ ∈ A. Since q > D(A,B), there exists y′ ∈ B such that ρ(x′, y′) < q. Thus
y = Fi(y

′) ∈ F (B) satisfies ρ(x, y) = riρ(x′, y′) < rq.
Since this holds for all x ∈ F (A), we have F (A) ⊆ Nrq(F (B)). Similarly,

F (B) ⊆ Nrq(F (A)). So D(F (A), F (B)) < rq. Since this holds for all q >
D(A,B), we have the desired inequality

D(F (A), F (B)) ≤ rD(A,B).

Hence F : H(S)→ H(S) is a contraction between complete metric spaces,
so by the contraction mapping theorem (2.1.4), F has a unique fixed point
K ∈ H(S), so K is nonempty and compact, and the sequence defined by
Vm+1 = F (Vm) converges to K for any V0 ∈ H(S).
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The function F : H(S) → H(S) defined by F (A) := ∪ni=1Fi(A) as in
theorem 2.1.8 is sometimes called a Hutchinson operator.

Later (definition 5.2.1), we will describe post-critically finite (pcf) fractals.
Essentially, a fractal that is pcf admits a notion of a finite boundary. Often,
the boundary is exactly what one would expect. For instance, the boundary
of the interval [a, b] is simply the set of points {a, b}. The boundary of the
Sierpinski gasket (example 2.1.12) is the set of vertices {q0, q1, q2} of the
equilateral triangle from which it is constructed.

It is well-known that if we take the initial set V0 in the sequence Vm+1 =
∪iFi(Vm) to be the boundary of a pcf fractal K, then

K =
⋃
m∈N

Vm.

We can also introduce the notion of an m-cell, which is a construction
which helps us understand the self-similar nature of fractals. It is a generalization
of the formula K = ∪iFi(K).

Definition 2.1.9. Let {Fi}ni=1 be an iterated function system. Let w =
w1w2 . . . wm be a “word” (i.e. string) of indices of length |w| = m, where
each wj ∈ {1, . . . , n}. Then

K =
⋃
|w|=m

Fw(K),

where Fw := Fw1 ◦ · · · ◦ Fwm. This is called a level m decomposition of
K, and each Fw(K) is called an m-cell, or cell of level m.

It is not hard to prove the following formula. Let K be the fractal
associated to an iterated function system {Fi}ni=1. Then

⋃
|w|=2

Fw(K) =
n⋃
j=1

n⋃
i=1

Fj ◦ Fi(K) =
n⋃
j=1

Fj(∪iFi(K)) =
n⋃
j=1

Fj(K) = K.

This argument easily generalizes by induction on m to the general case
|w| = m. We thus have four descriptions of a fractal set associated with an
iterated function system:

K =
n⋃
i=1

Fi(K) = lim
m→∞

Vm =
⋃
m∈N

Vm =
⋃
|w|=m

Fw(K),
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where again, Vm+1 = ∪ni=1Fi(Vm). In the limit definition, V0 ∈ H(S) is any
nonempty compact set of the metric space S. In the definition K =

⋃
m∈N Vm,

V0 is the boundary.
Now that the definition of a fractal has been established, we can give some

concrete examples of iterated function systems that give rise to well-known
fractal sets. Some of these examples show how clean the iterated function
system formulation of fractal sets is in comparison with other constructions.

Example 2.1.10 (Unit interval). It is perhaps surprising at first that this
entire discussion can be applied to the unit interval, which is a self-similar
set. Let F0(x) = 1

2
x and F1(x) = 1

2
(x+ 1). Notice that these are contractive

similarities with ratio 1/2. The attractor of this iterated function system is
the unit interval I = [0, 1]:

F0([0, 1]) ∪ F1([0, 1]) = [0, 1/2] ∪ [1/2, 1] = [0, 1].

Its m-cells Fw(K), |w| = m, are the subintervals of [0, 1] whose boundary
points consist of the dyadic points k/2m. For example, with m = 2, the
possible words of length m are 00, 01, 10, and 11, so

F0(F0(I)) ∪ F0(F1(I)) ∪ F1(F0(I)) ∪ F1(F1(I))

= [0, 1/4] ∪ [1/4, 1/2] ∪ [1/2, 3/4] ∪ [3/4, 1]

= I

Example 2.1.11 (Cantor Set). The Cantor set is typically constructed as
follows. Let C0 = [0, 1] be the unit interval, and let C1 = [0, 1/3]∪ [2/3, 1] be
the set constructed by removing the open “middle third” of C0. Let

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]

be the set constructed by removing the open “middle thirds” of the intervals
in C1. In general, let Cn+1 be the set resulting from the removal of the open
middle third interval from each of the intervals in Cn, and define the Cantor
set as

C =
∞⋂
n=0

Cn
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The first few steps of this construction of the Cantor set are shown in
figure 1. The Cantor set is the set of points left after repeating this process
infinitely many times.

There is another construction of C via iterated function systems. Let
F0(x) = 1

3
x and F1(x) = x+2

3
, which define contractions on the compact

set [0, 1]. Then the attractor of the iterated function system {F0, F1} is the
Cantor set, C = F0(C) ∪ F1(C).

The see this, suppose that x ∈ C; then x ∈ Ck for all k, so x ∈ C1. In
particular, either x is in [0, 1/3] or [2/3, 1]. Suppose that it’s in [2/3, 1]; the
other case is handled similarly.

Let k be arbitrary. We have that x ∈ Ck+1 = F0(Ck) ∪ F1(Ck). But
F0(Ck) ⊂ F0([0, 1]) = [0, 1/3] so x must be in F1(Ck). In other words,
3x− 2 ∈ Ck. Since k was arbitrary, 3x− 2 ∈ C = ∩kCk, which implies that
x ∈ F1(C). This proves that C ⊆ F0(C) ∪ F1(C).

Next, let x ∈ F0(C) ∪ F1(C); then either x ∈ F0(C) or x ∈ F1(C).
Suppose that x ∈ F1(C). Again, the other case is handled similarly. Then
3x − 2 ∈ C = ∩kCk, so x must be in F1(Ck) ⊆ Ck+1 for all k. So x ∈ Ck+1

for all k, and thus x ∈ C = ∩kCk, which shows that F0(C) ∪ F1(C) ⊆ C.

Figure 1: The Cantor set.

Example 2.1.12 (Sierpinski Gasket). A typical construction of the Sierpinski
triangle is as follows. Start with an equilateral triangle (including its interior);
call this set SG0.

Remove an “upside-down” triangle in the center, creating three smaller
copies of the original triangle (one on top, one on the bottom left, and one
on the bottom right). Call this set SG1.

Next, remove the middle triangle from each of the three triangles in SG1;
call this SG2. Keep repeating this process and define the Sierpinski gasket to
be SG = ∩n∈NSGn.

There is another construction involving iterated function systems. Let
{Fi}2

i=0 be the iterated function system defined by Fi(x) = 1
2
(x− qi) + qi, for
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qi ∈ R2 the vertices of an equilateral triangle. Then the attractor of {Fi}2
i=0

is SG. Its 1-cells Fw(K) for |w| = 1 are the “next” three copies of SG; the
one at the top, the one at the bottom left, and the one at the bottom right.
Its 2-cells are the “next” three copies from a given 1-cell, etc.

The Sierpinski Gasket is shown in figure 2.

Figure 2: The Sierpinski gasket, or Sierpinski triangle.

Example 2.1.13 (Koch curve). The Koch curve (see figure 3) is the fractal
set associated with the following iterated function system:

F0(x) =

(
1/3 0
0 1/3

)
x

F1(x) =

(
1/6 −

√
3/6√

3/6 1/6

)
x +

(
1/3
0

)
F2(x) =

(
1/6

√
3/6

−
√

3/6 1/6

)
x +

(
1/2√
3/6

)
F3(x) =

(
1/3 0
0 1/3

)
x +

(
2/3
0

)
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Figure 3: The first few steps Vm = ∪iFi(Vm−1) in the construction of the
Koch curve, taking the interval as V0.

Example 2.1.14 (Mandelbrot Set). The Mandelbrot set J is the set of all
complex numbers c such that the image of 0 remains bounded under arbitrary
iterations of the function fc(z) = z2 + c:

J = {c ∈ C | fnc (0) <∞ ∀n ∈ N}.

Here fkc denotes k iterations of fc, i.e. fc ◦ · · · ◦ fc(z). For such a simple
example, the Mandelbrot set is famously beautiful, and is shown in figure 4.

These pictures are generated by colouring the Mandelbrot set itself black
and assigning arbitrary colours to the points c ∈ C which cause 0 to diverge
under iterations of fc, with the colour depending on how quickly 0 diverges.

The Mandelbrot set does not have a known iterated function system,
although most mathematicians would classify the Mandelbrot set as a fractal.
This is unfortunately the nature of the study of self-similar sets; there is no
universally agreed upon definition of a fractal.
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(a) The Mandelbrot set. (b) Zooming in along the boundary of the
Mandelbrot set.

Figure 4: The Mandelbrot set is the set of points c ∈ C which allow 0 to stay
bounded under iteration of fc(z) = z2 + c.

Next, we introduce the notion of a similarity-value or similarity dimension.
We have chosen to call this the similarity-value because, while it can sometimes
be related to a type of fractal dimension, this is not the case in general.

Definition 2.1.15. Let {Fi}ni=1 be an iterated function system. The similarity
value of {Fi}ni=1 is the unique positive number s satisfying

∑
i r
s
i = 1, where

rj is the ratio of the similarity Fj.

Existence and uniqueness of s is not hard to see. Notice that by definition,
ri ∈ (0, 1) for all i. So, the function

θ(s) :=
n∑
i=1

rsi

has the property that θ(0) ≥ 1 and lims→∞ θ(s) = 0. Furthermore, θ
is continuous, so that by the intermediate value theorem, there exists some
s ≥ 0 with θ(s) = 1. In fact,

d

ds
θ(s) =

n∑
i=1

rsi log ri < 0.

Hence θ is monotone decreasing, so s is unique. Another way of thinking
about the similarity value is as follows. Consider, for example, a square.
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Scaling the side length by a factor r = 1/2 creates a square with 1/4 =
(1/2)2 of the original area. This is reflected in the equation 1 = 4(1/2)2 =∑4

i=1(1/2)2, which implies that the similarity value (or “similarity dimension”)
of the square is 2. Indeed, the square K can be described as the attractor
of four similarities Fi, each scaling the side length by 1/2 and shifting the
resulting smaller square to one of the four corners of the original square, so
that K = ∪iFi(K).

For a cube, scaling the side length by 1/2 creates a cube with 1/8 = (1/2)3

the original volume, so that the similarity value of the cube is (unsurprisingly)
3, since 1 = 8(1/2)3 =

∑8
i=1(1/2)3.

What about something more exotic, like the Sierpinski gasket? Scaling
its side by 1/2 (as the functions in example 2.1.12 do) gives a copy of SG
with 1/3 the original area, giving 1/3 = (1/2)s, or 1 =

∑3
i=1 r

s
i = 3(1/2)s,

which implies that s = log 3/ log 2.

2.2 String Models

There is another very useful way of describing fractal sets. We begin by
defining a string model related to K, and introducing a natural metric on it.
Later, we shall also equip it with a measure that has a special relationship
to a natural measure on K. We will begin with some simple definitions, and
end with an important theorem relating string models to fractals.

We denote an alphabet consisting of an arbitrary number of symbols by
E. For example, E = {0, 1} is an alphabet with two symbols, 0 and 1. A
string α is simply a concatenation of elements of E, and its length |α| is the
number of symbols in the string. The empty string is denoted by Λ.

We will use the shorthand notation En =
∏n

i=1E to represent the set of
all possible strings of length n comprised of letters from the alphabet E. We
will denote the set of all possible finite strings by E∗ =

⋃∞
n=1 E

n, and we will
denote the set of infinite strings of symbols by Eω.

For example, α = 011010100 ∈ E9 is a string comprised of nine symbols
from the alphabet E = {0, 1}, with length |α| = 9. The notation β � n
represents the first n letters of the string β. For example, α � 3 = 011.

Given two strings σ and τ , we denote their concatenation by στ . For
instance, if σ = 011 and τ = 0101, then στ = 0110101. We say that a
child of a string β is any string that can be created by concatenating one
additional symbol from E to β. For instance, the children of σ are 0110 and
0111; similarly, σ is said to be the parent of both 0110 and 0111. We say
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that a string is an ancestor of another string if there is a chain of parents
between them. For example, 01 is an ancestor of 011010, since there is a
chain of parents between them:

01→ 011→ 0110→ 01101→ 011010.

If α ∈ E∗ is a finite string, we define

[α] = {σ ∈ Eω | ∃τ ∈ Eω such that σ = ατ}
to be the set of all strings in Eω that begin with α (i.e. the set of all

strings which have α as an ancestor).
There is a relationship between string spaces and fractals. Let {Fi}ni=1 be

an iterated function system with similarity ratios {ri}ni=1. Since there are n
functions in the iterated function system, we will use an alphabet E with n
symbols to represent it, say E = {1, . . . , n}.

Given an alphabet E, a metric for the space Eω is defined as follows. Let
wΛ = 1, and using the similarity ratios ri, recursively define wαe = wαre for
α ∈ E∗, and e ∈ E. In other words,

wα =
∏
e

re,

where the product is taken over all symbols e that make up the string α,
allowing for repeating of an index. For example, w011 = r0r1r1.

We define a metric ρ on Eω by ρ(σ, τ) = wα, where α is the longest
common prefix of σ and τ , which means that α is the longest string for
which both σ and τ are in [α]. So,

diam[α] = sup{ρ(σ, τ) | σ, τ ∈ [α]} = wα.

It is not hard to show ρ is a metric on Eω. Let σ, τ ∈ Eω. By assumption,
each rj in the ratio list associated with the iterated function system is
positive, so ρ(σ, τ) =

∏
re ≥ 0.

Suppose that ρ(σ, τ) = 0. Then
∏
re = 0, but 0 < rj < 1 for all j. Hence

there must be infinitely many ratios rj in the product
∏
re, hence the longest

common prefix α is infinite in length, which implies that σ = τ . Similarly,
if σ = τ then the longest common prefix α = σ = τ is infinite in length, so
ρ(σ, τ) =

∏
re = 0, hence ρ(σ, τ) = 0 if and only if σ = τ .

Symmetry is easy, as the pair (σ, τ) clearly has the same longest common
prefix as the pair (τ, σ).
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Finally, let σ, τ, ξ be infinite strings. We wish to show ρ satisfies the
triangle inequality. Suppose that

• the longest common prefix between σ and τ is α;

• the longest common prefix between τ and ξ is β;

• the longest common prefix between σ and ξ is γ.

Notice that there are three possible cases:

1. if α = β then clearly γ = α = β, so wα = wβ = wγ;

2. if α is an ancestor of β, then it must be that γ = α, which implies that
wα ≤ wβ = wγ;

3. if β is an ancestor of α, then it must be that γ = β, which implies that
wα = wγ ≤ wβ.

In any case,

ρ(σ, τ) = wα ≤ max{wβ, wγ} ≤ wβ + wγ = ρ(σ, ξ) + ρ(ξ, τ)

So ρ is a metric (indeed, an ultrametric) on Eω. The metric space (Eω, ρ)
will turn out to be very useful in describing fractals.

Proposition 2.2.1. The collection B = {[α] | α ∈ E∗} is a countable basis
for the metric topology of Eω.

Proof. Note that although each [α] is uncountable (indeed, it is well known
that even the set of all infinite sequences of 0s and 1s is uncountable), the
collection B = {[α] | α ∈ E∗} itself is countable. The fact that this is
countable is given by the fact that B is a collection of finite combinations
of the letters {1, . . . , n}. To see that this generates the metric topology is
a bit trickier. Let B′ = {Bρ(x, ε) | x ∈ Eω, ε > 0} denote the usual basis
for metric topology on Eω, where Bρ(x, ε) = {y ∈ Eω | ρ(x, y) < ε} is the
usual open ball. Let T and T ′ be the topologies generated by B and B′,
respectively.

First, we’ll show that T ⊆ T ′. Let x ∈ Bρ(y, ε). Then ρ(x, y) = wα < ε,
where α the longest common prefix of x and y. In other words, we can write
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x = αx′ and y = αy′. But notice that wx = wαx′ < wα < ε, so choosing [x]
gives

x ∈ [x] ⊂ Bρ(y, ε)

Hence T ⊆ T ′.
Next we’ll show that T ′ ⊂ T . Let x ∈ [α] for some finite string α ∈ E∗.

Then choose

ε =
wα
2
,

so that Bρ(x, ε) = {y ∈ Eω | ρ(x, y) < ε = (wα/2)}, hence

x ∈ Bρ(x, ε) ⊂ [α],

as desired. Hence T = T ′ and so B is a countable basis for (Eω, ρ1/2).

It is a general fact of topology that proposition 2.2.1 actually also implies
that Eω is separable and Lindelöf [5].

There is an important set of functions on Eω which will essentially be the
“string version” of an iterated function system. For each symbol e ∈ E, we
can define a shift function θe : Eω → Eω by

θe(σ) = eσ.

In other words, θe just appends the symbol e to the beginning of σ.

Proposition 2.2.2. Let {Fi}ni=1 be an iterated function system with ratio
list {ri}ni=1. Let E = {1, . . . , n} be an n-symbol alphabet. Then (Eω, ρ) is
a complete metric space, and {θe}e∈E is an iterated function system on Eω

realizing the ratio list {ri}ni=1.

Proof. Let (σn) be a Cauchy sequence in Eω, let rmin = min{r1, . . . , rn}, and
let rmax = max{r1, . . . , rn}. Since (σn) is Cauchy, we have that for all k ∈ N,
there exists Nk ∈ N such that

ρ(σn, σm) < rkmin

for all m,n ≥ Nk. In particular, setting n = Nk, this implies that σNk �
k = σm � k for all m ≥ Nk. We will define a candidate limit τ by letting the
kth letter of τ be the kth letter of σNk . Then τ � k = σNk � k for all k. Let
ε > 0, and choose k large enough so that rkmax < ε. Then
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ρ(σm, τ) ≤ wk < rkmax < ε

for all m > Nk. Therefore σn → τ , so (Eω, ρ) is complete. Now to show
that {θe}e∈E is an iterated function system, let σ, τ ∈ Eω. Suppose that
the longest common prefix between these two strings is α (in other words,
α ∈ E∗ is the longest string such that σ, τ ∈ [α]). Then

ρ(θe(σ), θe(τ)) = ρ(eσ, eτ) = weα = rewα = reρ(σ, τ).

In other words, θe is a similarity with ratio 0 < re < 1, so {θe}e∈E is an
iterated function system realizing the desired ratio list.

The next theorem shows another important correspondence between string
models and fractal sets. Before proving it, we will need one final definition.
Given a metric ρ, the uniform metric ρu is the metric on the space of bounded
functions f : S → S defined by

ρu(f1, f2) := sup
x
{ρ(f1(x), f2(x)) | x ∈ S)}.

The fact that ρu is a metric is easy to see from its definition, as it is
defined in terms of a metric ρ.

Theorem 2.2.3. Let S be a complete metric space and let {Fe}e∈E be an
iterated function system represented by a string space Eω, with attractor set
K. Then there exists a unique, continuous surjection h : Eω → S with

h(eσ) = Fe(h(σ))

for all σ ∈ Eω and for all e ∈ E. Furthermore,

h(Eω) = K.

Proof. Let gk be the sequence of functions defined as follows. Choose any
a ∈ S and let g0(σ) = a for all σ ∈ Eω. Then define gn+1 by the formula
gn+1(eσ) = Fe(gk(σ)). Notice that g0 is continuous, and each gm is also
continuous as it is the composition of g0 with the continuous contractions Fe.

We will show that (gk) converges uniformly to the desired h. Let r =
max{r1, . . . , rn}. Given arbitrary σ ∈ Eω,
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ρ(gk+1(eσ), gk(eσ)) = ρ(Fe(gk(σ)), Fe(gk−1(σ))

= reρ(gk(σ), gk−1(σ))

≤ rρu(gk, gk−1),

where ρu is the uniform metric. So, by induction, ρ(gk+1(eσ), gk(eσ)) ≤
rkρu(g0, g1). This is true for any σ, so ρu(gk+1, gk) ≤ rkρu(g0, g1). Hence by
the triangle inequality, for any m > k we have

ρu(gm, gk) ≤
m−1∑
j=k

ρu(gj+1, gj)

≤
m−1∑
j=k

rjρu(g1, g0)

≤
∞∑
j=k

rjρu(g1, g0)

Now, Eω is compact (see [2], exercises 2.6.1(3) and 2.6.6(1)), so the
continuous functions g0 and g1 are bounded on Eω, hence ρu(g1, g0) is finite.
Furthermore,

∑∞
j=k r

jρu(g1, g0) is (the tail of) a geometric series, which is

known to be convergent. Hence
∑∞

j=k r
jρu(g1, g0) must go to 0 as k → ∞.

Since ρu(gm, gk) ≥ 0 but tends to zero as k → ∞, we must have that (gm)
is Cauchy. Since Eω is complete, the space of continuous functions in the
uniform metric C(Eω) is complete, so (gm) is uniformly convergent, say to
the continuous function gm → h.

Finally, we show h has the desired properties. Notice that

gk+1(Eω) =
⋃
e∈E

Fe(gk(E
ω)).

But, this sequence in k is exactly the sequence defined in theorem 2.1.8,
so it converges to the attractor set of the iterated function system

lim
k→∞

gk(E
ω) = h(Eω) = K,

which, of course, implies surjectivity of h. Finally, we show uniqueness.
Suppose that h and h′ are two functions satisfying h(eσ) = Fe(h(σ)) and
h′(eσ) = Fe(h

′(σ)). Then
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ρ(h(eσ), h′(eσ)) = ρ(Fe(h(σ)), Fe(h
′(σ))) ≤ rρ(h(σ), h′(σ))

for all strings σ ∈ Eω, and for all e ∈ E. Therefore,

ρu(h, h
′) ≤ rρu(h, h

′),

which implies that ρu(h, h
′) = 0, and hence that h = h′.

The identity h(eσ) = Fe(h(σ)) of the previous theorem can be rewritten
in terms of the shift function:

h ◦ θe = Fe ◦ h

We can consider h, called the addressing function, as a sort of parametrization
of the fractal. In practical terms, h : Eω → K is given by the formula

h(e1e2e3 . . . ) = lim
n→∞

Fe1 ◦ Fe2 ◦ · · · ◦ Fen(x)

for x some arbitrary point in the same metric space as K and each ej ∈ E,
or, equivalently, by

h(α) =
⋂
m≥1

Fα�m(K).

Now is a good time to work through a concrete example.

Example 2.2.4 (Cantor set). It is well-known that a number x ∈ [0, 1]
belongs to the Cantor set C if and only if its base 3 expansion contains only
0s and 2s. To see this, recall the construction from example 2.1.11. We set
C0 = [0, 1] and remove the middle third (1/3, 2/3). But this middle third is
precisely the set of numbers y ∈ [0, 1] whose first digit after the decimal in the
base 3 expansion is 1. Similarly, the second place digit of x is a 1 if and only
if x belongs to one of the sets (1/9, 2/9) or (7/9, 8/9), but these are precisely
the sets which get removed to construct C2. An induction argument shows
that x ∈ C if and only if the base 3 expansion of x has no 1s.

Now, what is the addressing function h : Eω → R for C? To start, we
have two similarities F0 and F1, so we will use a two-symbol alphabet, say
E = {a, b}. If α ∈ Eω, then h(α) is given as follows: turn all the a’s in the
string α into 0s, and turn all the b’s into 2s, and interpret the result in base
3. For example,
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h(aabaabaab . . . ) = (0.002002002 . . . )3 =
1

13

Then h(Eω) is precisely the Cantor set, as it consists of all possible
combinations of 0s and 2s interpreted in base 3. Furthermore, given σ, notice
that h(0σ) just appends a 0 to the first place after the decimal in the base 3
expansion, which is precisely the effect of F0(x) = x/3 on h(σ). Similarly,
h(1σ) just appends a 2 to the first place after the decimal in the base 3
expansion, which is exactly what F1 does to h(σ). Hence

F0(h(σ)) = h(aσ),

F1(h(σ)) = h(bσ).

So, h is the addressing function for C by theorem 2.2.3.

3 Measure Theory on Fractals

This section follows [2] and [7].

3.1 General Measure Theory

Recall the following definitions:

Definition 3.1.1. Let A be a σ-algebra. A measure is a function µ : A →
[0,∞] satisfying:

1. µ(∅) = 0;

2. if {An}∞n=1 are pairwise disjoint sets, then µ
(⋃

n∈NAn
)

=
∑∞

n=1 µ(An).

Definition 3.1.2. Let X be any set, and denote its power set by P(X). An
outer measure is a function µ̄ : P(X)→ [0,∞] satisfying:

1. µ̄(∅) = 0;

2. for all A,B ⊂ X, if A ⊆ B, then µ̄(A) ≤ µ̄(B);

3. for all {An}n∈N ⊂ P(X), µ̄
(⋃

n∈NAn
)
≤
∑∞

n=1 µ̄(An).
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The second property of outer measures is actually also a property of
measures, it just is not required as part of the definition. Notice that outer
measures are defined on all subsets of a set X, while a measure is only defined
on a fixed σ-algebra of subsets of X. As we shall see, there is a way of defining
outer measures on any set, and restricting these outer measures so that they
become measures. This will then allow us to define integration. Finally, we
will extend these ideas to the fractal setting by defining something called a
self-similar measure.

First, we will discuss a general theorem about constructing outer measures.

Theorem 3.1.3. Let X be any set, let A be a σ-algebra of subsets of X, and
let c : A → [0,∞] be any extended real-valued function. Then

µ̄(B) := inf
U

{∑
A∈U

c(A)

∣∣∣∣ U is a countable cover for B

}
is an outer measure on X satisfying:

1. µ̄(A) ≤ c(A) for all A ∈ A;

2. if ν̄ is any other outer measure with ν̄(A) ≤ c(A) for all A ∈ A, then
ν̄(B) ≤ µ̄(B) for all B ⊂ X.

Proof. First we show µ̄ is an outer measure. Note that the empty cover is a
countable cover of the empty set, so µ̄(∅) = 0 since the empty sum is equal
to 0. If A ⊂ B, then any cover of B is a cover of A, so we have µ̄(A) ≤ µ̄(B).
Finally, let (Bn)∞n=1 be a countable collection of sets. If µ̄(Bk) =∞ for some
k then the inequality

µ̄

(⋃
n∈N

Bn

)
≤

∞∑
n=1

µ̄(Bn)

is trivial, so assume that µ̄(Bn) <∞ for all n. Let ε > 0. Then for each
n, choose a cover Un such that

µ̄(Bn) +
ε

2n
≥
∑
A∈Un

c(A).

Since each Un is a cover for Bn, U := ∪nUn must be a cover for ∪nBn, so
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µ̄

(⋃
n∈N

Bn

)
≤
∑
A∈U

c(A) ≤
∞∑
n=1

∑
A∈Un

c(A) ≤
∞∑
n=1

µ̄(Bn) + ε.

Since ε was arbitrary, we have the desired inequality. Hence µ̄ is an outer
measure. Now we can check the two properties claimed in the theorem. For
(1), note that {B} covers the set B, so µ̄(B) ≤

∑
A∈{B} c(A) = c(B).

For (2), let U be a countable cover of B ⊆ X. If ν̄ is any other outer
measure satisfying ν̄(F ) ≤ c(F ) for all F ⊆ X, then

ν̄(B) ≤ ν̄

(⋃
A∈U

A

)
≤
∑
A∈U

ν̄(A) ≤
∑
A∈U

c(A),

so ν̄(B) is a lower bound for the set{∑
A∈U

c(A)

∣∣∣∣ U is a countable cover for B

}
.

But, by definition µ̄ is the greatest lower bound for this set, so ν̄(B) ≤
µ̄(B).

Next, we define the Carathéodory measurable sets.

Definition 3.1.4 (Measurable sets). Let µ̄ be an outer measure on a set X,
and let A ⊂ X. Then A is said to be µ̄-measurable if

µ̄(E) = µ̄(E ∩ A) + µ̄(E \ A)

for all E ⊂ X.

The proofs of the following two theorems consist of tedious exercises in set
theoretic manipulation and are not very illuminating, and are thus omitted.
A proof of the first theorem can be found in [2], theorem 5.2.5. A proof of
the second can be found in [2], theorem 5.4.2.

Theorem 3.1.5 (Carathéodory extension theorem). Let µ̄ be an outer measure
on a set X. The collection A of all µ̄-measurable sets is a σ-algebra on X,
and the restriction of µ̄ to this collection is a measure.
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Given an outer measure µ̄, we will denote the measure defined in theorem
3.1.5 simply by µ.

A metric outer measure ν̄ is a measure satisfying ν̄(A∪B) = ν̄(A)+ ν̄(B)
for any two sets A and B with dist(A,B) > 0. Metric outer measures ensure
the measurability of Borel sets.

Theorem 3.1.6. If ν̄ is a metric outer measure, then the Borel sets are
measurable.

While theorem 3.1.3 does give a nice formula for defining measures from
set functions, it unfortunately does not guarantee that the resulting outer
measure will be a metric outer measure. For that, we will need the following
theorem.

Theorem 3.1.7. Let U be a countable family of subsets of a metric space S
with the property that for each x ∈ S and for each ε > 0, there exists some
U ∈ U such that x ∈ U and diamU ≤ ε. Given ε > 0, define the subcollection

Uε = {U ∈ U | diamU ≤ ε.}
Given any set function c, let µ̄ε be the associated outer measure defined

by theorem 3.1.3 using the collection Uε, i.e.

µ̄ε(A) = inf
Uε

{∑
U∈Uε

c(U)

}
.

Then

µ̄(A) := lim
ε→0

µ̄ε(A) = sup
ε>0

µ̄ε(A)

defines a metric outer measure.

Proof. Let A,B be subsets of S with dist(A,B) > 0. Clearly µ̄ is an outer
measure since it was constructed by the method of theorem 3.1.3. Any outer
measure satisfies µ̄(A ∪ B) ≤ µ̄(A) + µ̄(B), so we must show the opposite
inequality.

Let 0 < ε < dist(A,B) and letD be a countable cover of A∪B by elements
of Uε. Then diamD ≤ ε < dist(A,B) for any D in D, so D intersects at most
one of A or B.

Divide D into two collections: D1, whose elements intersect A, and D2,
whose elements intersect B. Then
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∑
D∈D

c(D) =
∑
D∈D1

c(D) +
∑
D∈D2

c(D) ≥ µ̄ε(A) + µ̄ε(B)

This inequality holds for any countable cover D of A∪B, so it still holds
when we pass an infimum over D:

inf
D

∑
D∈D

c(D) = µ̄(A ∪B) ≥ µ̄ε(A) + µ̄ε(B).

This inequality holds for any ε > 0, so it holds when we pass a supremum
over ε:

µ̄(A ∪B) ≥ sup
ε>0

µ̄ε(A) + sup
ε>0

µ̄ε(B) = µ̄(A) + µ̄(B),

which is the desired inequality. Hence µ̄ is a metric outer measure,
meaning that Borel sets are measurable (by theorem 3.1.6).

To see the final equality, notice that as ε gets smaller, there are fewer
possible collections Uε over which to take the infimum, and hence µ̄ε increases,
so we have

lim
ε→0

µ̄ε(A) = sup
ε>0

µ̄ε(A).

3.2 Measures for Fractals

Finally we are ready to define three natural (and related) measures for a
fractal; two for the fractal itself in a metric space S (namely the standard
measure and the Hausdorff measure), and one for the corresponding string
space Eω.

First, we’ll discuss the self similar measure. What would be a reasonable
list of criteria we would like a fractal measure µ to satisfy? It would make
sense that if A = ∪Nj=1Cj is any finite union of cells which intersects only at

points, then µ(A) =
∑N

j=1 µ(Cj).
In addition, a sensible requirement of decomposing m-cells to “the next

level” (i.e. m+ 1-cells) is that

µ(Fw(K)) =
∑
i

µ(Fw ◦ Fi(K)).

These are rather unrestrictive conditions which could lead to many different
measures, but the standard measure is perhaps the simplest possible construction:
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Definition 3.2.1 (Standard measure). Let K be a fractal of an iterated
function system {Fe}e∈E, and denote its m-cells by Kw := Fw(K). Given a
word w = w1 . . . wm from the alphabet E, we will create a set function on the
m-cells defined by

c(Kw) =
m∏
i=1

µwi ,

where the weights µe are a set of n positive real numbers satisfying
∑

e∈E µe =
1.

Then we construct a metric outer measure µ̄ on subsets C ⊂ K by
applying theorem 3.1.7 to the function c. We define the self-similar measure
µ by restricting µ̄ to the σ-algebra of measurable sets.

The weights of the self similar measure can be any positive real numbers
whose sum is 1, but the standard measure is the simplest possible special case
of the self similar measure, defined by taking all the weights µe as equal. In
other words, if {Fe}e∈E is an iterated function system with a corresponding
n-symbol alphabet E, then

µe =
1

n
∀e ∈ E

For ease of notation, given a word w = w1 . . . wm of length m, we will
write µw :=

∏m
i=1 µwi , so that the measure of a cell is simply µ(Fw(K)) = µw.

Once we can construct measures, we can also define integration. We will
only be concerned with integrating continuous functions on fractals, so we can
restrict ourselves to Riemann integration, rather than the more complicated
theory of Lebesgue integration.

Definition 3.2.2 (Integral). Let µ be a measure, and K be a fractal. If
f ∈ C(K), then we can define the integral∫

K

fdµ := lim
m→∞

∑
|w|=m

f(xw)µ (Fw(K)) ,

where, for each w, xw is any element of Kw = Fw(K).

The reason that xw can be any element of Kw is that continuity of
f implies uniform continuity of f since any fractal is compact. Uniform
continuity means that given ε > 0, we can find a δ > 0 such that ρ(x, y) < δ
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only if ρ(f(x), f(y)) < ε/µ(K). Since each Fj is a contraction and K =
∪|w|=mFw(K), we can find a collection of m-cells Ki which cover K and have
mesh less than δ. Thus

ρ

(
N∑
i=1

f(xi)µ(Ki),
N∑
i=1

f(yi)µ(Ki)

)
≤

N∑
i=1

µ(Ki)ρ (f(xi), f(yi))

<

N∑
i=1

εµ(Ki)

µ(K)

= ε.

But xi, yi ∈ Ai were arbitrary, which shows that the choice is immaterial.
This is analogous to taking a smaller and smaller ∆xi in the usual Riemann
integral ∫

X

fdλ = lim
n→∞

n∑
i=1

f(x′i)∆xi,

where, as is well known, x′i can any element of ∆xi.

Proposition 3.2.3. Let {Fe}e∈E be an iterated function system, and let K be
its attractor (fractal). If µ is the standard measure on K, then the following
self-similar identity for measure holds:

µ(A) =
∑
e∈E

µeµ(F−1
e (A)).

Moreover, if f is a continuous function on K, the following self-similar
identity for integration also holds:∫

K

fdµ =
∑
e∈E

µe

∫
K

f ◦ Fedµ

Proof. For the measure identity, notice that µ(Fe(A)) = µeµ(A). Furthermore,
we can split A into a cell decomposition:

A =
⋃
e∈E

(A ∩ Fe(K))
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Invoking additivity of the measure on these disjoint sets and a using bit
of manipulation, we have

µ(A) = µ(∪e(A ∩ Fe(K)))

=
∑
e∈E

µ(A ∩ Fe(K))

=
∑
e∈E

µ(Fe(F
−1
e (A ∩ Fe(K))))

=
∑
e∈E

µeµ(F−1
e (A)),

as desired. For the proof of the integration identity, notice that by
definition µ(FeFwK) = µeµ(FwK), so∑

e∈E

µe

∫
K

f ◦ Fedµ =
∑
e∈E

µe lim
m→∞

∑
|w|=m

µ(FwK)f ◦ Fe(xw)

= lim
m→∞

∑
|w|=m

∑
e∈E

µ(FeFwK)f(xew)

= lim
m→∞

∑
|w|=m+1

µ(FwK)f(xw)

=

∫
K

fdµ,

where xew is any point in FeFwK.

Using precisely the same proof technique, a simple induction argument
will actually generalize the self-similar formulas, which reduce to proposition
3.2.3 in the case m = 1:

µ(A) =
∑
|w|=m

µwµ(F−1
w A),

∫
K

fdµ =
∑
|w|=m

µw

∫
K

f ◦ Fwdµ,

where, again, Fw is a shorthand for Fw1 ◦ · · · ◦ Fwm .
There are two other useful measures when discussing fractals: the Hausdorff

measure (to be discussed in section 4), and the string measure.
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Definition 3.2.4 (String measure). Let ri be the ratios of an iterated function
system. Recall that B = {[α] | α ∈ E∗} is a countable basis for the metric
topology of Eω (proposition 2.2.1). Recursively define

r(Λ) = 1,

r(eα) = rer(α),

where, since ρ is the string metric, r(α) = diam[α]. The string measure
M on Eω is the measure built from theorem 3.1.7, taking c([α]) = (diam[α])s

as the set function, where s is the similarity value.

Note the similarity between the string metric and the string measure.
The motivation for this definition will become apparent when we compare it
to the Hausdorff dimension.

4 Fractal Dimension

There are several notions of “dimension” one can use when discussing fractals:
covering dimension, packing dimension, similarity dimension, etc. In this
section we introduce one of the most popular: the Hausdorff dimension. We
also give a condition under which computing this dimension is relatively easy,
called the Moran open set condition. This section follows [2].

4.1 Hausdorff Dimension

Recall theorem 3.1.7, which states that any given set function c : P(X) →
[0,∞] can be made into a metric outer measure on P(X) via the formula

µ̄(B) := sup
ε>0

inf
Uε

∑
A∈Uε

c(A),

where the infimum is over countable covers Uε for B satisfying diamU ≤ ε
for all U ∈ Uε. The restriction of µ̄ to the σ-algebra of measurable sets
is a metric measure. We will use this process to define the s-dimensional
Hausdorff outer measure Hs

as the outer measure associated with the set
function cs(A) := (diamA)s. The restriction of Hs

to the measurable sets is
the s-dimensional Hausdorff measure Hs.

More explicitly, if a set A is measurable, then define
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Hs
ε(A) := inf

Bε

∑
B∈Bε

(diamB)s,

where the infimum is taken over all countable covers Bε of A, with the
property that diamB ≤ ε for all B ∈ Bε. Notice that as ε gets smaller,
Hs
ε(A) gets larger (since there are fewer open covers to choose from, hence

the infimum becomes larger). Thus

Hs(A) = sup
ε>0
Hs
ε(A) = lim

ε→0
Hs
ε(A)

We can even write the more explicit formula for the s-dimensional Hausdorff
measure,

Hs(A) = lim
ε→0

inf
Bε

∑
B∈Bε

diam(B)s

Proposition 4.1.1. Let A be a Borel set. There is a critical value s0 at
which Hs(A) =∞ for all s < s0, and Hs(A) = 0 for all s > s0.

Proof. Let s < t be positive real numbers and let A be any Borel set. If
Hs(A) <∞, then

Ht(A) = lim
ε→0
Ht
ε(A)

≤ lim
ε→0

εt−sHs
ε(A)

= 0t−sHs(A)

= 0.

The statement that if Ht(A) > 0 then Hs(A) =∞ is the contrapositive of
what we’ve just shown. This shows the existence of the critical value s0.

Definition 4.1.2 (Hausdorff Dimension). The Hausdorff dimension of a
measurable set A is the unique value s0, such that Hs(A) =∞ for all s < s0,
and Hs(A) = 0 for all s > s0. It is denoted by dimH(A).

Why would we define the Hausdorff dimension this way? While it may
seem convoluted at first glance, the Hausdorff dimension actually preserves
some familiar intuitive notions of what we’d expect dimension to be.

For example, consider a line, which ought to have dimension 1. What if
we tried to assess its “amount” of dimension 2? Well, we would hope that
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this quantity is zero; the line has dimension 1, so dimension 2 is too large in
helping to describe the line. The same can be said of dimension 3, 4, and so
on. On the other hand, it would take infinitely many 0 dimensional objects
(points) to create the line.

This is the intuition behind the critical value of the Hausdorff measure.
It “picks out” the dimension of a set A by saying that its measure in terms
of dimension greater than the dimension of A is zero, while its measure in
terms of dimension less than the dimension of A is infinite.

A key feature of the Hausdorff measure is that dimH is not restricted
to integer values. It allows for interpolation between dimensions, and as we
shall see, fractals often have non-integer Hausdorff dimension.

Now we introduce a relationship between the Hausdorff measure and the
measure we created for strings in section 3.

Lemma 4.1.3. Let A ⊂ Eω. The there is an α ∈ E∗ such that A ⊆ [α] and
diamA = diam[α].

Proof. Let α be the longest common prefix of all the strings in A. Clearly
A ⊆ [α], thus diamA ≤ diam[α].

Let σ ∈ A. Then σ � (|α| + 1) is not a common prefix for all strings in
A, so ∃τ ∈ A such that τ � (|α| + 1) 6= σ � (|α| + 1). Since α is the longest
common prefix for {σ, τ}, we have ρ(σ, τ) = wα = diam[α], so diamA ≥
wα = diam[α].

Theorem 4.1.4. Let {Fi}ni=1 be any iterated function system, and let s be
the similarity value of the ratios {ri}ni=1. Then Hs = M on the space Eω,
where M is the string measure.

Proof. Suppose diamA > 0. By lemma 4.1.3, there exists α such thatA ⊆ [α]
and diamA = diam[α].

SoM(A) has the property thatM(A) ≤M([α]) = (diam[α])s = (diamA)s.
But by theorem 3.1.3,Hs

ε is an upper bound of all such measures, soHs
ε ≥M.

This holds for all ε > 0, so Hs ≥M.
Now let α ∈ E∗, ε > 0. There exists an integer N large enough so that

rNmax < ε, N > |α|, so r(β) < ε ∀β ∈ EN . [α] is the disjoint union of all [β]
with β ≥ α and |β| = N , so

Hs
ε([α]) ≤

∑
β

(diam[β])s =
∑
β

M([β]) =M([α]),
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where the sum is over all such β. This holds for all ε > 0, so Hs ≤ M,
hence Hs =M.

Theorem 4.1.5 (Moran’s open set condition). Let {Fi} be an iterated function
system giving rise to a fractal K. The following condition is called Moran’s
open set condition:

There exists an open set U , called a Moran open set, such that

1. Fi(U) ∩ Fj(U) = ∅ for all i 6= j;

2. Fi(U) ⊆ U for all i.

If Moran’s open set condition is satisfied, then dimH(K) is equal to the
similarity value.

A proof of theorem 4.1.5 can be found, for example, in [2] section 6.5.

Example 4.1.6 (Hausdorff dimension of the Cantor set). The interval (0, 1)
is a Moran open set for C. Recall the iterated function system for C is
F0(x) = x/3 and F1(x) = (x+ 2)/3, so

F0((0, 1)) = (0, 1/3) ⊂ (0, 1), F1((0, 1)) = (2/3, 1) ⊂ (0, 1),

and

F0((0, 1)) ∩ F1((0, 1)) = (0, 1/3) ∩ (2/3, 1) = ∅.

Hence the similarity value for C is its Hausdorff dimension by theorem
4.1.5. The ratios of the similarities F0 and F1 are r0 = r1 = 1/3, so

1 =
∑
i

rsi =

(
1

3

)s
+

(
1

3

)s
=

2

3s

Which has solution s = dimH(C) = log 2/ log 3.

Example 4.1.7 (Hausdorff dimension of the Sierpinski gasket). Recall example
2.1.12; the interior U of the first triangle, SG0, is a Moran open set for SG.
Indeed, Fi(U) just returns one three smaller triangle interiors (specifically,
the top, bottom right, or bottom left triangle interior, depending on i), so
Fi(U) ⊂ U for all i and Fi(U) ∩ Fj(U) = ∅ for any i 6= j since U is the
interior, i.e. does not include its boundary and hence there is an empty
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intersection, since the triangles themselves only intersect at a single point
along the boundary.

The ratios of the similarities {Fi}2
i=0 are r0 = r1 = r2 = 1/2, so the

similarity value is

1 =
∑
i

rsi =

(
1

2

)s
+

(
1

2

)s
+

(
1

2

)s
=

3

2s
,

which has solution s = dimH(SG) = log 3/ log 2.

5 Dirichlet Forms and Laplacians

We will close with a section on some more modern developments on fractals,
specifically, the construction of Laplacians and related differential equations
on them. There are three related methods to do this: one by constructing a
“Dirichlet form” (which is related to the Laplacian), another by taking a limit
of “finite graph Laplacians”, and yet another by a probabilistic approach. We
shall adopt the first two methods here. This section follows [1], [3], [6], and
[7].

5.1 Manifold Case

We begin with a brief summary of Laplacians on manifolds. This will give
the motivation for how we extend the Laplacian to the fractal setting.

LetM be a compact and connected Riemannian manifold with Riemannian
metric g, and let p ∈ M . We denote the tangent space of M at point p by
TpM . We denote the dual of the tangent space, consisting linear functionals
on TpM , by T ∗pM .

Define αg : TpM → T ∗pM by αg(u)v = g(u, v). Then αg is an isomorphism
between the tangent space and its dual.

Let p ∈ M . We define the gradient ∇ at p of a function f on M to be
the unique function ∇f satisfying the equation

dpf(X) = g(∇f(p), X)

for all X ∈ TpM , where dpf(X) is directional derivative of f in the
direction of X evaluated at point p, i.e.

32



dpf(X) =
d

dt
(f ◦ c)

∣∣∣∣
t=0

,

where c : (ε, ε)→M is any smooth, parametrised curve satisfying c(0) =
p and ċ(0) = X.

This definition of gradient allows us to define the divergence ∇· of a
vector field V as the negative adjoint of the gradient with respect to the
L2(M) inner product:

〈V,∇f〉L2(M) = 〈(∇)∗V, f〉L2(M) = −〈∇ · V, f〉L2(M)

Finally, we define the Laplace operator or Laplacian ∆ to be the operator
satisfying the formula

∆f := −∇∗∇f = ∇ · (∇f)

Next, we prove some basic properties about the Laplacian.

Lemma 5.1.1. Let V be an inner product space on a field F and let T be any
linear operator. Then its adjoint T ∗ is also linear with respect to the inner
product.

Proof. Let x, y ∈ V and let α, β ∈ F. Using linearity in the first argument of
the inner product, along with the fact that (T ∗)∗ = T , we have that

〈T ∗(αx+ βy), z〉 = 〈αx+ βy, (T ∗)∗z〉
= α〈x, Tz〉+ β〈y, Tz〉
= α〈T ∗x, z〉+ β〈T ∗y, z〉
= 〈αT ∗x+ βT ∗y, z〉

Proposition 5.1.2. The Laplace operator is linear.

Proof. ∇ : C∞(M) → X(M) is linear, so its adjoint ∇∗ : X(M) → C∞(M)
is linear as well, where X(M) is the set of smooth vector fields with L2 inner
product. Hence ∆ := −∇∗∇ : C∞(M)→ C∞(M) is linear as well.

Proposition 5.1.3. The Laplace operator is symmetric, i.e.

〈f,∆f〉 = 〈∆f, f〉
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Proof. By definition, we have

〈f,∆f〉 = 〈(∇·)∗f,∇f〉
= −〈∇f,∇f〉
= −〈(∇)∗∇f, f〉
= 〈∇ · ∇f, f〉
= 〈∆f, f〉

Proposition 5.1.4. The Laplace operator is positive-definite, i.e.

〈f,∆f〉 ≤ 0

Proof. By positive-definiteness of the inner product (i.e. 〈x, x〉 ≥ 0), we have

〈f,∆f〉 = 〈(∇·)∗f,∇f〉 = −〈∇f,∇f〉 ≤ 0

Proposition 5.1.5. ∆u = 0 if and only if u is a constant function on M .

Proof. Let ∆u = 0. Then∫
M

u∆u = 0 = −
∫
M

g(∇u,∇u),

so that ∇u = 0. Now, let p, q ∈ M . M is compact and connected, so let
γ : [0, 1] → M be a smooth curve such that γ(0) = p and γ(1) = q. By the
fundamental theorem of calculus,

u(p)− u(q) =

∫ 1

0

d

ds
(u ◦ γ)(s)ds

=

∫ 1

0

dγ(s)u(γ̇(s))ds

=

∫ 1

0

g(∇f(γ(s)), γ̇(s))ds

= 0

Since this is true for any p, q we conclude that u is constant.
Next, suppose that u is constant. Then dpu(X) = 0 = g(∇u,X) for all

X ∈ TpM so we have ∇u = 0, and hence by definition ∆u = 0.
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Propositions 5.1.2 through 5.1.5 are, in fact, the properties we later shall
use as the definition of a more general Laplacian on fractals.

Next, we define the Dirichlet form. Let u, v be functions on the manifold
M and define the Dicihlet form to be

E(u, v) :=

∫
M

g(∇u,∇v)dvol

Notice that by taking the adjoint of the gradient, it has the following
relationship with the Laplacian:

E(u, v) = −〈u,∆v〉L2(M)

This actually gives rise to an alternate way of defining the Laplacian,
and is the method we will use for constructing Laplacians on fractals. An
important fact that we shall see later is that a function ũ that minimizes the
Dirichlet form

E(ũ, ũ) =

∫
M

g(∇ũ,∇ũ)dvol

is actually a solution of Laplace’s equation, ∆ũ = 0.

5.2 Fractal Case

There is a well-developed theory of analysis on a certain class of fractals,
called post-critically finite (pcf) fractals.

Definition 5.2.1 (Post-critically finite fractal). Let {Fi}ni=1 be an iterated
function system with associated string space Eω and addressing function h :
Eω → K. The critical set is

C = h−1

(⋃
i 6=j

[Fi(K) ∩ Fj(K)]

)
The post-critical set is

P =
⋃
n∈N

ξ(n)(C)

where ξ(w1w2w3w4 . . . ) = w2w3w4 . . . is called the deletion map. The
fractal K is said to be post-critically finite if P is a finite set.
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Definition 5.2.2 (Boundary). V0 := h(P) is called the boundary of the
fractal.

Post-critical finiteness essentially ensures that fractals have finite boundary
and finite intersection of m-cells, which is the foundation for the entire theory
of fractal analysis. For the remainder of this section, is will be assumed that
fractals are pcf.

Example 5.2.3 (Boundary of the interval). Let I = [0, 1], which is a fractal
with iterated function system F0(x) = x/2, F1(x) = (x + 1)/2. The fixed
points of each F0 is 0, and the fixed point of F1 is 1. Notice that F0(I) ∩
F1(I) = {1/2}, so the critical set is

C = h−1({1/2}) = {01̄, 10̄}

Since h(01̄) = F0 ◦ F1 ◦ F1 ◦ . . . (x) = F0(1) = 1/2, and similarly h(10̄) =
F1 ◦ F0 ◦ F0 ◦ . . . (x) = F1(0) = 1/2. The post critical set is therefore

P =
⋃
n≥1

ξ(n)({01̄, 10̄}) = {1̄, 0̄},

which is finite, so [0, 1] is a pcf fractal. But P is precisely the set of
points which h maps to the fixed points 0 and 1, so the boundary of I is
(unsurprisingly)

V0 = h(P) = {0, 1}

Example 5.2.4 (Boundary of the Sierpinski Gasket). Let SG be the Sierpinski
gasket, with iterated function system Fi(x) = 1/2(x − qi) + qi for qi the
vertices of an equilateral triangle. The fixed point of each Fj is qj, hence
h(j̄) = Fj ◦ Fj ◦ Fj ◦ . . . (x) = qj, where j̄ := jjj . . . .

The intersection F1(SG) ∩ F2(SG) contains one point which we call p3,
and similarly F2(SG) ∩ F3(SG) = {p1}, and F1(SG) ∩ F3(SG) = {p2}.

Now, one can check that h−1({p1}) = {23̄, 32̄}, and similarly h−1({p2}) =
{13̄, 31̄} and h−1({p3}) = {12̄, 21̄}.

So the critical set is C = h−1({p1, p2, p3}) = {23̄, 32̄, 13̄, 31̄, 12̄, 21̄}, and
the post critical set is therefore

P =
⋃
n≥1

ξ(n)({23̄, 32̄, 13̄, 31̄, 12̄, 21̄}) = {3̄, 2̄, 1̄},
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but this is precisely the set of points which map to the fixed points qi, so
the boundary of SG is simply

V0 = h(P) = {q1, q2, q3}.

We will be using both the interval and the Sierpinski gasket as a running
example throughout this section.

Let V be any set, and let `(V ) := {f | f : V → R}. If V is finite, then it
is understood to be equipped with the inner product

〈u, v〉 =
∑
p∈V

u(p)v(p)

We begin by defining the Laplacian and Dirichlet form on finite sets.

Definition 5.2.5 (Finite Laplacian). Let V be a finite set. A Laplacian is a
linear operator ∆ : `(V ) → `(V ) which satisfies the following properties for
any u ∈ `(V ):

1. 〈u,∆u〉 = 〈∆u, u〉 (symmetry)

2. 〈u,∆u〉 ≤ 0 (negative semi-definite)

3. ∆u = 0 if and only if u is a constant function on V

4. if p 6= q, then ∆pq ≥ 0, where ∆pq := 〈χp,∆χq〉 = (∆χq)(p) and χq is
the characteristic function of the set {q}.

Notice that these are precisely the properties we proved about the Laplace
operator in the Riemannian setting (propositions 5.1.2 through 5.1.5); here,
we take these properties as the definition of the Laplacian.

The collection of Laplacians on V is denoted by L(V ), and the collection

of linear operators satisfying only the first three properties is denoted L̃(V ).

Lemma 5.2.6. Let V be finite, and let H : `(V )→ `(V ) be a linear operator.
Define Hpq = (Hχq)(p). For any p ∈ V , u ∈ `(V ), we can write

(Hu)(p) =
∑
q∈V

Hpqu(q)
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Proof. ∑
q∈V

Hpqu(q) =
∑
q∈V

(Hχq)(p)(u(q))

=
∑
q∈V

{
H(p) q = p

0 q 6= p
u(q)

=
∑
q∈V

{
(H(p))(u(p)) q = p

0 q 6= p

= (Hu)(p)

Definition 5.2.7 (Finite Dirichlet Form). Let V be a finite set. A Dirichlet
form is a bilinear map E : `(V )×`(V )→ R satisfying the following properties
for any (u, v) ∈ `(V )× `(V ):

1. E(u, v) = E(v, u) (symmetry)

2. E(u, u) ≥ 0 (positive semi-definite)

3. E(u, u) = 0 if and only if u is a constant function on V

4. E(u∗, u∗) ≤ E(u, u), where u∗ = min{max{0, u}, 1}. (Markov property)

The collection of Dirichlet forms on V is denoted by DF(V ), and the
collection of bilinear forms satisfying only the first three properties is denoted
by D̃F(V ).

There is an important correspondence between Laplacians and Dirichlet
forms which was alluded to in section 5.1. In fact, to any symmetric linear
operator H : `(V )→ `(V ), we can associate a Dirichlet form by EH(u, v) :=
−〈u,Hv〉.

Theorem 5.2.8. Let V be a finite set, and let π : L̃(V )→ D̃F(V ) be defined
by π(H)(u, v) := EH(u, v). Then π is a bijection and DF(V ) = π(L(V )).

Proof. π is surjective, since given EH , we can reverse engineer H using matrix
coefficients. Choose coefficients Hpq so that

−
∑
p∈V

u(p)

(∑
q∈V

Hpqv(q)

)
= EH(u, v),
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and define H : `(V ) → `(V ) by Hu(p) :=
∑

q∈V Hpqu(q). It is also

injective, since if H1 6= H2 are two different operators in L̃(V ), then there is a
function v such that H1v 6= H2v, hence −〈u,H1v〉 = EH1(u, v) 6= EH2(u, v) =
−〈u,H2v〉. So π is bijective. However, we still need to show that π(H)

satisfies the necessary properties to be in D̃F(V ) if and only if H satisfies

the necessary properties to be in L̃(V ).

First we show π(L̃(V )) = D̃F(V ). Let ∆ ∈ L̃(V ). We check that π(∆) :

`(V )× `(V )→ R given by π(∆)(u, u) = E∆(u, u) is in D̃F .
Symmetry of E∆ is given by symmetry of ∆ itself. By nonpositive definiteness

of ∆, we have that

E∆(u, u) = −〈u,∆u〉 ≥ 0

Next, if u ∈ `(V ) is constant, then we have ∆u = 0, hence

E∆(u, u) = −〈u,∆u〉 = −〈u, 0〉 = 0

Thus π(L̃(V )) ⊆ D̃F(V ). Next, we show that D̃F(V ) ⊆ π(L̃(V )). Let

E ∈ D̃F(V ). The associated linear operator is the operator ∆ satisfying
E(u, u) = −〈u,∆u〉.

Symmetry of E implies symmetry of ∆. E is nonnegative-definite, so
E(u, u) = −〈u,∆u〉 ≥ 0 implies that 〈u,∆u〉 ≤ 0, which is precisely the
statement that ∆ is nonpositive-definite. Let u be constant. Then E(u, u) =
0 = −〈u,∆u〉, which implies that ∆u = 0; similarly, if ∆u = 0 then E =

0 = −〈u,∆u〉 which implies u must be constant (since E ∈ D̃F), and so

D̃F(V ) = π(L̃(V )).
Next we will show that π(L(V )) ⊆ DF(V ). Suppose that ∆ ∈ L(V ) and

consider π(∆) = E∆. Let u∗ = min{max{0, u}, 1}, and notice that

E∆(u, u) = −
∑
p∈V

∑
q∈V

u(p)∆pqu(q)

=
1

2

∑
p∈V

∑
q∈V

∆pq (u(p)− u(q))2

We wish to show that E∆(u, u) ≥ E∆(u∗, u∗) ∀u ∈ `(V ). Let u be
arbitrary; there are several possible cases to consider. For instance, suppose
that u(q) ∈ (0, 1) and u(p) ≤ 0. Then (u∗(p)− u∗(q))2 = u(q)2 < (u(p)− u(q))2.
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A similar argument works for all other cases. In every case, we get the
inequality

(u∗(p)− u∗(q))2 ≤ (u(p)− u(q))2 ,

and since ∆pq ≥ 0 for all p 6= q ∈ V , we conclude that all the terms in
the summation are positive (or 0 if p = q), hence E∆(u∗, u∗) ≤ E∆(u, u) for
each u in `(V ), as desired. So π(L(V )) ⊆ DF(V ).

Next we want to show that EH ∈ DF(V ) implies that H ∈ L(V ), so

suppose that EH ∈ DF(V ). Suppose for contradiction that H ∈ L̃(V )\L(V ).
Then ∃p 6= q with Hpq < 0. Without loss of generality, set Hpq = −1. Denote
u(p) = x, u(q) = y, and u(a) = z for all a 6= p, q. Then

EH(u, u) = α(x− z)2 + β(y − z)2 − (x− y)2.

Now EH is nonnegative-definite, so we can guarantee that α, β > 0.
Consider the case x = 1, z = 0. Then EH(u, u) = α− 1 + 2y+ (β− 1)y2, and
EH(u∗, u∗) = α− 1.

We can consider a case where y < 0, and |y| is small enough to make
EH(u, u) ≤ EH(u∗, u∗), which implies that EH /∈ DF(V ), which is the desired
contradiction. Hence DF(V ) = π(L(V )).

In particular, this means that given a Dirichlet form we can uniquely find
an associated Laplacian (and vice-versa). This is an extremely important
result because, as we shall see, functions which minimize E are solutions to
Laplace’s equation, and hence problems involving Laplace operators can be
reformulated as problems involving Dirichlet forms.

We have defined Dirichlet forms on finite sets, but now we need to define
them on arbitrary measure spaces. The reason for introducing Dirichlet forms
is that we can use them to talk about Laplace’s equation on simply a measure
space, rather than explicitly defining a Laplacian on a manifold.

Definition 5.2.9 (Dirichlet Form). Let (X,µ) be a measure space. Let D be a
dense subspace of L2(X,µ). A Dirichlet form is a bilinear map E : D×D → R
satisfying the following properties for any (u, v) ∈ D ×D.

1. E(u, v) = E(v, u) (symmetry)

2. E(u, u) ≥ 0 (nonnegative-definite)

40



3. E(u∗, u∗) ≤ E(u, u), where u∗ = min{max{0, u}, 1}. (Markov property)

4. D ⊂ L2(X,µ) is a Hilbert space when equipped with the inner product
〈u, v〉D := 〈u, v〉L2(X,µ) + E(u, v).

Definition 5.2.10 (Restriction). Let E be a Dirichlet form on a set V (finite
or infinite), and let U be a proper subset of V . We define the restriction

E(f, f)|U := inf{E(g, g) | g|U = f}

Using this, we can define a notion of compatible sequences of Dirichlet
forms En on the graph approximations Vn as defined in section 2.

Definition 5.2.11 (Compatibility). Let (Vn, En) be a sequence of Dirichlet
forms En defined on an increasing sequence of sets Vn. The sequence is said
to be compatible if the following restriction property holds for all n:

En+1|Vn = En

Now we shall introduce a Dirichlet form defined on any proper subset of
a fractal K.

Proposition 5.2.12. Let Vn be an increasing sequence of sets converging
to a dense subset V ∗ := ∪nVn of a set V . Let En ∈ DF(Vn) ∀n ∈ N, and
suppose that (Vn, En) is a compatible sequence. Then we define

E(u, v) := lim
n→∞

En(u|Vn , v|Vn),

which exists (but may be infinite). Then E is a Dirichlet form on V ∗.

Proof. Since En ∈ DF for all n, we have by symmetry of En that

E(u, v) = lim
n→∞

En(u, v) = lim
n→∞

En(v, u) = E(v, u),

so E is symmetric. Also En(u, u) ≥ 0 for all u ∈ `(V ) and for all n ∈ N,
so, in the limit, E(u, u) ≥ 0. It is clear from the definition that Em(αu, v) =
αEm(u, v) and Em(u+ v, w) = Em(u,w) + Em(v, w); since these hold for each
m, they hold for the limit E as well. Thus E is an inner product on V ∗.

Next, notice that V ∗ is dense in V ∗ (in the fractal setting, V ∗ will be
dense in the fractal K = V ∗, which is a measure space).
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Now we wish to show E(u, u) = 0 if and only if u is constant. First
suppose u is constant; then since En is a Dirichlet form for each n, we have
En(u, u) = 0 for all n and hence the limit E(u, u) = 0 is also zero. dom

Next let E(u, u) = 0. Notice that by the definition of the restriction and
the fact that (Vn, En) is compatible,

En+1|Vn(u, u) = En(u, u) = inf{En+1(g, g) | g|Vn = u, }

so we have that En(u, u) is an increasing sequence (which proves that E is
well-defined, but may be infinite). Now, suppose by contradiction that u is
not constant; then each En(u, u) is strictly greater than 0 and the sequence is
increasing, hence the limit E(u, u) is strictly greater than 0. This contradicts
our assumption that E(u, u) = 0, hence u must be constant.

Next, let u∗ = min{max{0, u}, 1} and let u ∈ `(V ) be any other real
valued function on V . Since En ∈ DF , we have En(u∗, u∗) ≤ En(u, u) for all
n. So E(u∗, u∗) = limn→∞ En(u∗, u∗) ≤ limn→∞ En(u, u) = E(u, u), as desired.

Finally, we will need to show completeness in the norm induced by the
inner product. In fact, we will have to show that this holds for functions in
dom E := {f : V ∗ → R | E(f, f) <∞ modulo constant functions.

We can identify dom E/constant functions with the space E ′ := {u ∈
dom E | u(q0) = 0}.

Let (un) be a sequence in E ′ such that

E(un − uk)→ 0

As n,m→∞. Fix m. We have 0 ≤ Em(un−uk) ≤ E(un−uk), so Em(un−
uk) → 0 also. It then follows from the definition of Em that limk→∞ uk(x)
exists for all x ∈ Vm, so define u ∈ `(V ∗) by

u(x) := lim
k→∞

uk(x)

This implies that Em(un − u) = limk→∞ Em(un − uk). But since (un) is
Cauchy, we can make Em(un−uk) arbitrarily small for any m, so we can make
Em(un − u) arbitrarily small for any m. Hence E(un − u) → 0, as desired.
Therefore E : V ∗ × V ∗ → R is a Dirichlet form.

We define the domain of E to be the set

dom E := {f : V ∗ → R | E(f, f) <∞}
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Recall that the sequence Vn → V ∗ converging to a dense subset using
V0 as the boundary is exactly the scenario we had in the fractal case, from
section 2. Thus all of the preceding discussion applies to fractals sets (and
their approximating graphs) as well.

We’ve built up a theory of Dirichlet forms, but now it’s time to actually
construct one. We will start by defining the following bilinear “energy form”
on approximating set Vm of a fractal:

Em(u, v) =
∑
x∼my

[u(x)− u(y)] [v(x)− v(y)]

Recall x ∼m y whenever x and y have an edge joining them in the mth

level graph approximation Vm. There is also the associated quadratic form

Em(u) := Em(u, u) =
∑
x∼my

[u(x)− u(y)]2 ,

which satisfies the following polarization identity with the bilinear form:

Em(u, v) =
1

4
[Em(u+ v)− Em(u− v)].

The reason to define Em this way will become apparent soon. Let’s
first check that Em(u, v) is a finite Dirichlet form on Vm. It is clear from
the definition that Em is symmetric and nonnegative-definite, and it is also
easy to see from the formula that Em(u) = 0 if and only if u is constant.
Finally, if we replace u by u∗ = min{1,max{u, 0}}, then each of the terms
[u(x)− u(y)]2 can only decrease or stay the same, which can be easily verified
but is somewhat tedious.

Suppose u(x), u(y) < 0; then u∗(x) = u∗(y) = 0, so [u∗(x) − u∗(y)]2 =
0 < [u(x)− u(y)]2.

If 0 < u(x) < 1 and u(y) < 0, then u∗(x) = u(x) and u∗(y) = 0, so
[u∗(x)− u∗(y)]2 = [u∗(x)]2 < [u(x)− u(y)]2 since u(y) is strictly negative.

If 0 < u(x), u(y) < 1 then we simply have equality, [u∗(x) − u∗(y)]2 =
[u(x)− u(y)]2.

If 0 < u(x) < 1 and u(y) > 1, then u∗(x) = u(x) and u∗(y) = 1, so
[u∗(x)− u∗(y)]2 = [u(x)− 1]2 < [u(x)− u(y)]2.

If u(x), u(y) > 1 then u∗(x) = u∗(y) = 1 so [u∗(x) − u∗(y)]2 = 0 ≤
[u(x)− u(y)]2.

Finally if u(x) > 1 and u(y) < 0, then u∗(x) = 1 and u∗(y) = 0 so
[u∗(x)− u∗(y)]2 = 1 < [u(x)− u(y)]2.
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Symmetry takes care of all the other cases. So Em satisfies the Markov
property, and is therefore a finite Dirichlet form.

Definition 5.2.13 (Harmonic extension). Let u ∈ `(Vm) be a function, where
Vm is an approximating set for the fractal K. A harmonic extension of u to
Vm+1 is a function ũ ∈ `(Vm+1) which minimizes the Dirichlet form in the
sense that

ũ|Vm = u

and

Em(ũ) ≤ Em(f)

for any other extension f of u.

Often, the Dirichlet form will need to be renormalized at each step, in
the sense there are coefficients cxy, such that, given Em(u) =

∑
x∼my(u(x)−

u(y))2, we have

Em+1(ũ) =
∑
x∼my

cxy(u(x)− u(y))2.

In fact, we will concentrate on cases where the coefficients cxy are equal
for all x, y, so that rEm+1(ũ) = Em(u) for some r ∈ R. Notice that we write
r = 1/cxy for all x and y. In this case, we write the renormalized Dirichlet
form as

Em(u) :=
1

r
Em(u).

Then, if ũ is a harmonic extension, then Em(u) = Em+1(ũ) for all m. The
unit interval and Sierpinski gasket, for example, are both cases where all cxy
are equal.

Example 5.2.14 (Interval). Let I = [0, 1] be the unit interval, which has the
iterated function system F1 = x/2, F2 = (x + 1)/2. Then V0 = {0, 1} (see
example 5.2.3) and V1 = {0, 1/2, 1}. So given some function u defined on
V0, the energy form takes the value E0(u) = [u(1)− u(0)]2.

How would we go about defining the harmonic extension of u to V1? We
need to find ũ that minimizes
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E1(ũ) = [ũ(1)− ũ(1/2)]2 + [ũ(1/2)− ũ(0)]2.

The only undefined quantity is ũ(1/2), and some calculus shows that the
minimizing value is ũ(1/2) = 1/2[u(1) + u(0)]. Substituting this in, we
actually find that

E1(ũ) =
1

2
E0(u).

Similarly, at the mth level graph approximation Vm =
{

k
2m

}2m

k=0
, the only

“new” terms in the (m+1)th Dirichlet form are those involving odd values of
k. Given any odd k, say k = 2j + 1, the term ũ

(
2j+1
2m+1

)
only appears twice in

the sum for Em+1 since any point in Vm+1 only has two neighbouring points
to which it is connected. Specifically, ũ

(
2j+1
2m+1

)
appears in the terms

[
u

(
2j + 2

2m+1

)
− ũ

(
2j + 1

2m+1

)]2

+

[
ũ

(
2j + 1

2m+1

)
− u

(
2j

2m+1

)]2

.

Again some simple calculus shows that this is minimized by setting the
new value to be the average between its two neighbours

ũ

(
2j + 1

2m+1

)
=

1

2

[
u

(
2j + 2

2m+1

)
+ u

(
2j

2m+1

)]
.

Notice that by this extension algorithm, we are essentially constructing a
linear function with the desired values at the boundary, which is precisely the
solution we’d expect from solving the 1-dimensional Laplace equation. Again,
a computation yields

Em+1(ũ) =
1

2
Em

This is true for any m, so the renormalization constant for the Dirichlet
forms on the unit interval is r = 1/2.

The Sierpinski gasket is another case where the coefficients cxy are all
equal.

Example 5.2.15 (Sierpinski Gasket). Recall that the boundary of SG is
the set V0 = {q0, q1q2} of vertices of the equilateral triangle from which SG
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is constructed. Suppose that u ∈ `(V0) is defined so that u(q0) = 1 and
u(q1) = u(q2) = 0. Then

E0(u) =
∑
x∼0y

(u(x)− u(y))2 = (1− 0)2 + (0− 1)2 + (0− 0)2 = 2.

How do we find the harmonic extension ũ on V1? Certainly we will
have ũ(F0(q1)) = ũ(F0(q2)) := x at the two points in V1 closest to q0 and
ũ(F1(q2)) = y at the point in V1 farthest from q0 (see figure 5).

0 0

1

x x

y

Figure 5: The set V1 and the value of ũ on these points.

The energy form on V1 using the extended function ũ is

E1(ũ) = 2(x− 1)2 + 2x2 + 2y2 + 2(x− y)2.

Setting the derivatives of E1 equal to zero, we get two linear equations to
solve:

4x = 1 + x+ y

4y = 2x

By inspection, a solution is x = 2/5, y = 1/5. By symmetry, exactly the
same result would occur if we had set the value 1 at any of the other boundary
points. Furthermore, E1 is a quadratic form, so taking its derivative gives a
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set of linear minimizing equations. If the values of u on V0 are a, b, c then ũ
must satisfy the following rule:

ũ(z) =
2

5
a+

2

5
b+

1

5
c,

where z is the point shown in figure 6. Of course, symmetry takes care of
the points x and y as well.

b c

a

z y

x

Figure 6: The set V1 with ũ taking arbitrary values on these points.

It requires considerably more work, but one can show (see [7] section 1.3)
that this rule actually holds locally at each m-cell, with r = 3/5, so that
Em+1(ũ) = (5/3)Em(u) for each m.

Example 5.2.14 provides us with a hint as to why we defined the Dirichlet
form as Em(u) =

∑
x∼my[u(x)−u(y)]2. The renormalized Dirichlet form can

be written explicitly in the simple case of the interval:

Em(u) = 2m
2m−1∑
k=0

[
u

(
k + 1

2m

)
− u

(
k

2m

)]2

=
1

2m

2m−1∑
k=0

(
u
(
k+1
2m

)
− u

(
k

2m

)
1/2m

)2

.

Assuming u is continuous and differentiable, we can apply the mean value
theorem to obtain points xk such that
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Em(u) =
2m−1∑
k=0

(
du

dx
(xk)

)2(
1

2m

)
.

Passing the limit, we see that this is a Riemann sum converging to

E(u) = lim
m→∞

Em(u) =

∫ 1

0

(
du

dx

)2

dx,

which is the classical Dirichlet form on the Euclidean interval. This is
the motivation for defining the finite Dirichlet form the way we did.

It is therefore natural to define

E(u) := lim
m→∞

Em(u),

which satisfies the compatibility property of 5.2.11, and hence converges
to a Dirichlet form by 5.2.12. With the Dirichlet form defined on fractal sets,
we can define an associated Laplacian.

Definition 5.2.16 (Fractal Laplacian). Let K be a fractal set and let f :
K → R be a function in domE ∩ L2(µ). The Laplacian of f , with respect to
a measure µ, is the continuous function ∆µf satisfying

E(f, v) = −〈v,∆µf〉L2(µ) = −
∫
K

v∆µfdµ

for any v that vanishes along the boundary V0 of K.

The fact that we require v to vanish on the boundary is analogous to
requiring that g vanish on the boundary in the integration by parts formula∫ b

a

(
dg

dx

)2

dx = g
dg

dx

∣∣∣∣b
a

−
∫ b

a

g
d2g

dx2
dx = −〈g,∆g〉L2(λ),

relating the classical Dirichlet form
∫ b
a

(
dg
dx

)2
dx to the classical Laplacian.

Theorem 5.2.8 guarantees that ∆µ exists and is uniquely defined by this
equation. Notice that the Laplace operator depends on our choice of measure.

Lemma 5.2.17. Let u, v be defined on Vm. If ũ is the harmonic extension
of u to Vm+1 and v′ is any extension (not necessarily harmonic) of v, then
Em+1(ũ, v′) = Em(u, v).
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Proof. By the polarization identity,

Em(u, v) =
1

4
[Em(u+ v)− Em(u− v)].

We have Em+1(ũ, ṽ) = Em(u, v). Consider the function v′ − ṽ. By
definition, we have the following:

Em+1(ũ, v′ − ṽ) =
∑

x∼m+1y

[ũ(x)− ũ(y)][(v′(x)− ṽ(x))− (v′(y)− ṽ(y))].

Notice that any term in this sum containing x ∈ Vm is zero, since the
two extensions of v must agree on this set. Thus the only terms in the sum
which might contribute anything are those for which x ∈ Vm+1 \ Vm. Hence
the only remaining terms must be of the form∑

x∼my

α[ũ(x)− u(y)],

where α = [(v′(x)−ṽ(x))−(v′(y)−ṽ(y))]. These also sum to zero, because
for x ∈ Vm+1 \ Vm, ũ(x) is just the average of the values of the neighbouring
points in Vm+1.

Thus Em+1(ũ, v′ − ṽ) = 0. This implies that v′ − ṽ is constant on Vm+1,
which means v′ = ṽ + p for some p ∈ R. By the definition of Em, the extra
constant p will “cancel out”, giving the desired result

Em+1(ũ, v′) = Em+1(ũ, ṽ) = Em(u, v).

Definition 5.2.18 (Harmonic function). Let h take any finite value on the
boundary V0. Given the increasing sequence of approximating sets Vm → V ∗,
the extended function h̃ ∈ `(V ∗) is said to be harmonic if it minimizes Em
for all m.

Not only does the Dirichlet form allow us to define the Laplace operator,
but the two also have a special relationship in terms of harmonic functions.
Next comes the theorem that shows why Dirichlet forms are so useful:

Theorem 5.2.19. A function h ∈ dom E is harmonic (i.e. minimizes the
Dirichlet forms Em for all m) if and only if h is a solution to Laplace’s
equation ∆µh = 0.
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Proof. Let h be harmonic; notice that E0(h, v) = 0 because v vanishes on the
boundary V0. By lemma 5.2.17, E(h, v) = E0(h, v), thus

−
∫
K

v∆µhdµ = E(h, v) = E0(h, v) = 0.

But since this holds for any v, it must be that ∆µh = 0. Now suppose
that ∆µh = 0; then E(h, h) =

∫
K

(∆µh)2dµ = 0. But the sequence Em → E
satisfies

0 ≤ Em(h, h) ≤ Em+1(h, h) ≤ E(h, h) = 0 for all m.

Hence Em(h, h) = 0 for all m, i.e. h is harmonic.

This allows us to solve the fractal differential equation ∆µf = 0, with
boundary conditions given by the values of f on the boundary V0, by finding
the harmonic function associated with the repeated harmonic extension of
f |V0 from V0 to V1, to V2, etc. Of course, the challenge then becomes finding a
suitable harmonic extension “algorithm”; even the simple case of the interval
took a bit of work in example 5.2.14. The Sierpinski gasket in example 5.2.15
was significantly harder.

Furthermore, although the resulting extended function is only defined on
V ∗ = ∪mVm, recall that V ∗ = K. Let u ∈ dom E ; we’ll show that u is
uniformly continuous, hence it can be extended to a continuous function on
K naturally by setting u(x) = limu(xn) for a sequence (xn) in V ∗ converging
to x ∈ K.

If x ∼m y, then

r−m[u(x)− u(y)]2 ≤ Em(u) ≤ E(u),

since r−m[u(x)−u(y)]2 is an individual term in the sum of positive terms
which make up Em(u). This implies that |u(x) − u(y)| ≤ rm/2E(u)1/2. Now
consider any “chain” of elements xm, . . . , xm+k which are related in the sense
that for any ` > m, x` ∈ V` and x` ∼`+1 x`+1. Then
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|u(xm)− u(xm+k)| ≤
k∑
i=1

|u(xm)− u(xm+i)|

≤
k∑
i=1

r(m+`)/2E(u)1/2

= rm/2E(u)1/2

k∑
i=1

ri/2

=
rm/2

1− r1/2
E(u)1/2,

which can be made arbitrarily small by taking large enough values of m,
since 0 < r < 1. So dom E ⊂ C(K).

Finite Dirichlet forms also satisfy the self-similar relation Em+1(u) =∑
i r
−1Em(u ◦ Fi) for any m by definition, hence the limit satisfies this as

well:

E(u) =
∑
i

r−1E(u ◦ Fi)

Definition 5.2.20 (Tent function). Let K be a fractal. Fix m, and consider
the usual approximating set Vm. Let S(Vm) denote the set of continuous
functions u such that u ◦ Fw is harmonic for all |w| = m.

The tent function is defined to be the continuous function ψ
(m)
x ∈ S(Vm)

which satisfies

ψ(m)
x (y) = δxy

for all y in Vm, where x is any point in Vm \V0 and δxy is the Dirac delta.

The reason these are called tent functions is that in the case of the interval
K = [a, b], ψ

(m)
x is shaped like a triangle, or “tent”, on the sets Vm, which

are just dyadic points `/2m in [a, b] (see example 5.2.14).
Our definition of the Laplacian up until this point is fairly useless if we

just want to know the value of ∆µu(x) at a single point x. The following
proposition takes care of this issue by introducing a “graph Laplacian” ∆m

on the set Vm, which converges (after some rescaling) to ∆µ.

51



Proposition 5.2.21. Suppose that a Laplacian of u exists. The following
pointwise formula for the Laplacian holds at each x ∈ V ∗ \ V0:

∆µu(x) = lim
m→∞

r−m
(∫

K

ψ(m)
x dµ

)−1

∆mu(x),

where

∆mu(x) :=
∑
y∼mx

(u(y)− u(x)) for all x ∈ Vm \ V0

and ψ
(m)
x (y) := δxy is the tent function at x.

Proof. Given u, notice that

Em(u, ψ(m)
x ) = r−m

∑
x∼my

[u(x)− u(y)][ψ(m)
x (x)− ψ(m)

x (y)]

= r−m
∑
x∼my

[u(x)− u(y)][1− 0]

= r−m∆mu(x).

But by definition,

E(u, ψ(m)
x ) =

∫
K

ψ(m)
x ∆µudµ.

Hence

r−m∆mu(x) =

∫
K

ψ(m)
x ∆µudµ.

Dividing both sides by
∫
K
ψ

(m)
x dµ, we get

r−m∆mu(x)

(∫
K

ψ(m)
x dµ

)−1

=

∫
K
ψ

(m)
x ∆µudµ∫

K
ψ

(m)
x dµ

for all m. But ∆µu is continuous, and clealy limm→∞ ψ
(m)
x is the Dirac

delta δxy on V ∗, so ∫
K

∆µuψ
(m)
x dµ∫

K
ψ

(m)
x dµ

→ ∆µu.
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Hence

lim
m→∞

r−m
(∫

K

ψ(m)
x dµ

)−1

∆mu(x) = ∆µu(x).

6 Conclusion

Fractal sets exhibit interesting self-similar structure. For instance, the fractal
itself satisfies the self-similar formula

K =
⋃
|w|=m

Fw(K)

for any m. It can also be described, however, as a limit of approximating
sets

K = lim
m→∞

Vm,

where Vm+1 = ∪ni=1Fi(Vm), and V0 is any nonempty compact set. These
are both consequences of the contraction mapping theorem. A fractal constructed
from an iterated function system {Fi}ni=1 has an associated string space Eω,
where E is a set of n symbols. This complete, compact ultrametric space is
related to the fractal by the addressing function h, via the formula

h ◦ θe = Fe ◦ h.

The function h defines a natural “parametrization” of K, in the sense
that h(Eω) = K. The natural measure µ on K also satisfies a self similar
formula

µ(A) =
∑
|w|=m

µwµ(F−1
w A),

which leads to another self-similar formula for the integral,∫
K

fdµ =
∑
|w|=m

µw

∫
K

f ◦ Fwdµ.

The Hausdorff measure and the associated Hausdorff dimension are also
useful in describing fractals. This notion of dimension allows for non-integer
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values; for instance, the Cantor set has Hausdorff dimension dimH(C) =
log 2/ log 3, and the Sierpinski gasket has Hausdorff dimension dimH(SG) =
log 3/ log 2. Moran’s open set condition gives conditions that allow for a
much simpler calculation of the Hausdorff dimension, using the similarity
value.

With an understanding of the basic structure of fractals, one can a Laplacian
on a certain class of fractals, called pcf fractals. This Laplacian is constructed
indirectly via a Dirichlet form, but it can in fact be described locally as well.
These generalized Dirichlet forms and Laplacians both reduce to the classical
Dirichlet form and Laplacian in the Euclidean case.
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